Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res ; 77: 103382, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38484450

RESUMO

Friedreich's ataxia is a spinocerebellar degenerative disease caused by microsatellite (GAA.TTC)n repeat expansion in the first intron of FXN gene. Here, we developed iPSC lines from an FRDA patient (IGIBi016-A) and non-FRDA healthy control (IGIBi017-A). Both iPSC lines displayed typical iPSC morphology, expression of pluripotency markers, regular karyotypes (46, XY; 46, XX), capacity to grow into three germ layers, and FRDA hallmark -GAA repeat expansion and decreased FXN mRNA. Through these iPSC lines, FRDA phenotypes may be replicated in the in vitro assays, by creating neuron subtypes, cardiomyocytes and 3D organoids, for molecular and cellular biomarkers and therapeutic applications.

2.
Stem Cell Res ; 76: 103319, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340452

RESUMO

The PPP2R2B gene, expressed highly in the brain, harbours trinucleotide CAG repeats in the 5'UTR region, in the range of 7-42 repeats. Individuals carrying CAG repeats greater than 43 have been associated to manifest a neurodegenerative disease condition termed as Spinocerebellar Ataxia type 12 (SCA12). An iPSC line from an adult male diagnosed with SCA12 presenting symptoms of gait (Gait Dominance) was generated. It showed pluripotency and trilineage markers without any chromosomal abnormality. This line can be utilized as an essential resource in enhancing our understanding of the molecular pathogenic mechanisms underlying SCA12 by facilitating generation of various neuronal cell types.


Assuntos
Células-Tronco Pluripotentes Induzidas , Ataxias Espinocerebelares , Adulto , Humanos , Masculino , Células-Tronco Pluripotentes Induzidas/metabolismo , Ataxias Espinocerebelares/patologia , Neurônios , Repetições de Trinucleotídeos
3.
Stem Cell Res ; 76: 103340, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367363

RESUMO

Friedreich's ataxia is a neurodegenerative disorder caused by the hyper expansion of (GAA-TTC)n triplet repeats in the first intron of the FXN gene. Here, we generated iPSC lines from two individuals with FRDA, both of whom have homozygous GAA repeat expansion in the first intron of FXN gene. Both iPSC lines demonstrated characteristics of pluripotency, including expression of pluripotency markers, stable karyotypes and ability to develop into all three germ layers, and presence of GAA repeat expansion with reduced FXN mRNA expression. These iPSC lines will serve as invaluable tools for investigating the pathophysiology and phenotypes of FRDA.


Assuntos
Ataxia de Friedreich , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Íntrons
5.
Stem Cell Res ; 74: 103289, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141359

RESUMO

Friedreich's ataxia (FRDA) is a rare neurodegenerativedisorder caused by over expansion of GAA repeats in thefirstintron ofFXN gene. Here, we generated two iPSC lines from FRDA patients with biallelic expansion of GAA repeats in the first intron ofFXNgene.IGIBi014-A and IGIBi015-Aboth iPSC lines demonstrated characteristics of pluripotency, normal karyotypes (46, XY),the capacity to differentiate into all three germ layers, and the ability to sustain the GAA repeat expansion with decreased FXN mRNA expression. These cell lines will be utilized to comprehend the pathophysiology of the illness and the FRDA's predictive phenotypes.


Assuntos
Ataxia de Friedreich , Células-Tronco Pluripotentes Induzidas , Humanos , Ataxia de Friedreich/metabolismo , Íntrons/genética , 60529 , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem Celular , Expansão das Repetições de Trinucleotídeos/genética
7.
Sci Total Environ ; 902: 166063, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544448

RESUMO

BACKGROUND: Diesel exhaust (DE) exposure contributes to the progression of chronic respiratory diseases and is associated with dysregulation of microRNA expression. The present study aims to investigate the involvement of miRNAs and target genes in DE-induced lung fibrosis. METHODS: C57BL/6 mice were divided into three groups. Group 1 mice were exposed to filtered air (Control). Group 2 mice were exposed to DE for 30 min per day, 5 days per week, for 8 weeks (DE). Group 3 mice received DE exposure along with resveratrol on alternate days for the last 2 weeks (DE + RES). Mice were sacrificed to isolate RNA from lung tissue for miRNA microarray profiling. Bronchoalveolar lavage fluid and lung tissues were collected for cell count and biochemical analysis. RESULTS: DE exposure resulted in differential expression of 28 miRNAs with fold change >2 (p < 0.05). The upregulated miR-212-3p was selected for further analysis. Consensus analysis revealed enrichment of SIRT1 in the FoxO pathway, along with a co-annotation of reduced body weight (p < 0.05). A549 cells transfected with a miR-212-3p inhibitor showed a dose-dependent increase in SIRT1 expression, indicating SIRT1 as a direct target. Treatment with resveratrol restored SIRT1 and miR-212-3p expression and led to a reduction in inflammatory cytokines (p < 0.05). The modulation of SIRT1 correlated negatively with macrophage infiltration, confirming its role in regulating cellular infiltration and lung inflammation. Fibronectin, alpha-SMA, and collagen levels were significantly decreased in DE + RES compared to DE group suggesting modulation of cellular functions and resolution of lung fibrosis. Furthermore, a significant decrease in FoxO3a and TGF-ß gene expressions was observed upon resveratrol administration thereby downregulating pro-fibrotic pathway. CONCLUSIONS: The present study demonstrates resveratrol treatment stabilizes SIRT1 gene expression by attenuating miR-212-3p in DE-exposed mice, leading to downregulation of TGF-ß and FoxO3a expressions. The study highlights the therapeutic role of resveratrol in the treatment of DE-induced pulmonary fibrosis.


Assuntos
MicroRNAs , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Emissões de Veículos/toxicidade , Sirtuína 1/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Citocinas/metabolismo , Fator de Crescimento Transformador beta
8.
Stem Cell Res ; 64: 102927, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36191544

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder with defect in dystrophin gene that shows features of degeneration of muscle tissue at an early age. Here, we describe iPSC lines generated from LCL of two patients of Indian origin carrying 46-48 and 49-50 exons deletions in DMD. The resulting iPSC lines IGIBi006-A and IGIBi008-A showed all the characteristic features of pluripotency, differentiated into cells of three germ layers in vitro and have no major genetic alterations due to reprogramming process. These lines can serve as a useful cell model for studying disease pathogenesis and will aid in precision therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofina/metabolismo , Distrofia Muscular de Duchenne/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Éxons/genética , Diferenciação Celular
9.
Stem Cell Res ; 64: 102904, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055117

RESUMO

Human Kinesin Family Member 5A (KIF5A) gene mutations have been identified as a putative genetic cause of amyotrophic lateral sclerosis (ALS). Disease modelling using human-induced pluripotent stem cells (HiPSCs) is the next-generation approach to studying numerous human diseases. For the current investigation, we report the generation of patient-specific KIF5A iPSC lines with a mutation at the splice site mutation (c.3020 + 3 A > T) in the intronic region. The resulting line displayed markers for pluripotency, a healthy karyotype, the ability to differentiate into three germ layers in vitro, vector clearance, the KIF5A mutation, STR-based genomic identity, and contamination-free culture.


Assuntos
Esclerose Amiotrófica Lateral , Células-Tronco Pluripotentes Induzidas , Ataxias Espinocerebelares , Humanos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Cinesinas/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Ataxias Espinocerebelares/metabolismo , Linhagem Celular , Mutação/genética , Fenótipo , Paraplegia/metabolismo , Família
10.
Mitochondrion ; 58: 184-199, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33766748

RESUMO

Calcium (Ca2+) signalling is well known to dictate cellular functioning and fate. In recent years, the accumulation of Ca2+ in the mitochondria has emerged as an important factor in Chronic Respiratory Diseases (CRD) such as Asthma and Chronic Obstructive Pulmonary Disease (COPD). Various reports underline an aberrant increase in the intracellular Ca2+, leading to mitochondrial ROS generation, and further activation of the apoptotic pathway in these diseases. Mitochondria contribute to Ca2+ buffering which in turn regulates mitochondrial metabolism and ATP production. Disruption of this Ca2+ balance leads to impaired cellular processes like apoptosis or necrosis and thus contributes to the pathophysiology of airway diseases. This review highlights the key role of cytoplasmic and mitochondrial Ca2+ signalling in regulating CRD, such as asthma and COPD. A better understanding of the dysregulation of mitochondrial Ca2+ homeostasis in these diseases could provide cues for the development of advanced therapeutic interventions in these diseases.


Assuntos
Cálcio/metabolismo , Pneumopatias/metabolismo , Mitocôndrias/metabolismo , Humanos
11.
Curr Cancer Drug Targets ; 17(1): 74-88, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27774879

RESUMO

BACKGROUND: Glioblastoma has been reckoned as the prime cause of death due to brain tumours, being the most invasive and lethal. Available treatment options, i.e. surgery, radiotherapy, chemotherapy and targeted therapies are not effective in improving prognosis, so an alternate therapy is insistent. Plant based drugs are efficient due to their synergistic action, multi-targeted approach and least side effects. METHODS: The anti-tumorous potential of Nardostachys jatamansi rhizome extract (NJRE) on U87 MG cell line was evaluated through various in vitro and in silico bio-analytical tools. RESULTS: NJRE had a strong anti-proliferative effect on U87 MG cells, Its IC50 was 33.73±3.5, 30.59±3.4 and 28.39±2.9 µg/mL, respectively after 24, 48 and 72 h. NJRE at 30 µg/mL induced DNA fragmentation, indicating apoptosis, early apoptosis began in the cells at 20 µg/mL, whereas higher doses exhibited late apoptosis as revealed by dual fluorescence staining. NJRE at 60 and 80 µg /mL caused a G0/G1 arrest and at 20 and 40 µg/mL showed excessive nucleation and mitotic catastrophe in the cells. Immuno-blotting validated the apoptotic mode of cell death through intrinsic pathway. NJRE was harmless to normal cells. In silico docking of NJRE marker compounds: oroselol, jatamansinol, nardostachysin, jatamansinone and nardosinone have revealed their synergistic and multi-targeted interactions with Vestigial endothelial growth factor receptor 2 (VEGFR2), Cyclin dependent kinase 2 (CDK2), B-cell lymphoma 2 (BCL2) and Epidermal growth factor receptor (EGFR). CONCLUSION: A strong dose specific and time dependent anti-tumorous potential of NJRE on U87 MG cells was seen. The extract can be used for the development of safe and multi-targeted therapy to manage glioblastoma, which has not been reported earlier.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Nardostachys/química , Extratos Vegetais/farmacologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Ensaio Cometa , Simulação por Computador , Cumarínicos/química , Cumarínicos/farmacologia , Quinase 2 Dependente de Ciclina/química , Quinase 2 Dependente de Ciclina/metabolismo , Receptores ErbB/química , Receptores ErbB/metabolismo , Glioblastoma/patologia , Humanos , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular/métodos , Extratos Vegetais/química , Rizoma/química , Terpenos/química , Terpenos/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Parasitol Res ; 113(1): 197-209, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24158647

RESUMO

Malaria and dengue are the two most important vector-borne human diseases caused by mosquito vectors Anopheles stephensi and Aedes aegypti, respectively. Of the various strategies adopted for eliminating these diseases, controlling of vectors through herbs has been reckoned as one of the important measures for preventing their resurgence. Artemisia annua leaf chloroform extract when tried against larvae of A. stephensi and A. aegypti has shown a strong larvicidal activity against both of these vectors, their respective LC50 and LC90 values being 0.84 and 4.91 ppm for A. stephensi and 0.67 and 5.84 ppm for A. aegypti. The crude extract when separated through column chromatography using petroleum ether-ethyl acetate gradient (0-100%) yielded 76 fractions which were pooled into three different active fractions A, B and C on the basis of same or nearly similar R f values. The aforesaid pooled fractions when assayed against the larvae of A. stephensi too reported a strong larvicidal activity. The respective marker compound purified from the individual fractions A, B and C, were Artemisinin, Arteannuin B and Artemisinic acid, as confirmed and characterized through FT-IR and NMR. This is our first report of strong mortality of A. annua leaf chloroform extract against vectors of two deadly diseases. This technology can be scaled up for commercial exploitation.


Assuntos
Aedes/efeitos dos fármacos , Anopheles/efeitos dos fármacos , Artemisia annua/química , Inseticidas , Extratos Vegetais/farmacologia , Animais , Artemisininas/química , Insetos Vetores/efeitos dos fármacos , Larva/efeitos dos fármacos , Controle de Mosquitos , Folhas de Planta/química , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...